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Abstract--Experiments were conducted with air and liquid flowing in horizontal pipelines, 2.52 and 
9.53 cm dia, to determine the interfacial instabilities that exist in a stratified flow. The liquid viscosity was 
varied from l to 80 cP. Three types of instabilities are defined: regular 2-D waves are associated with 
pressure variations in phase with the wave slope, irregular large-amplitude waves and atomization of the 
liquid are associated with pressure variations in phase with the wave height. Linear stability theory is used 
to provide a physical interpretation and to predict conditions for the initiation of these instabilities. 

1. I N T R O D U C T I O N  

At low flows of gas and liquid in a horizontal pipeline a stratified regime exists whereby the liquid 
moves along the bottom of the pipe and the gas, concurrently with it. Although this pattern can 
be considered the simplest one for gas-liquid flows, large differences are observed between 
measurements and presently available correlations for pressure drop and hold-up. The main reason 
is that waves can cause the drag of the gas on the liquid to be greater than if the interface were 
smooth. This causes larger pressure drops and smaller hold-ups than are predicted if the Blasius 
equation is used to calculate the interfacial stress. 

This problem is recognized in flow maps (Baker 1954; Mandhane et al. 1974; Taitel & Dukler 
1976a) by the definition of smooth-stratified and wavy-stratified patterns. However, these maps 
have shortcomings since they do not accurately characterize the type of waves and since the 
suggested transitions do not reflect observed effects of changes of liquid viscosity and of pipe 
diameter. 

Most of the studies of wave generation in concurrent gas-liquid flows have been conducted for 
rectangular channels with a large aspect ratio (Hanratty & Engen 1957; Hanratty & Hershman 
1961; Hanratty 1983). For air-water flows no waves are observed at sufficiently low gas velocities. 
The first waves observed with increasing gas velocity are 2-D capillary-gravity waves. These appear 
to be unstable to 3-D disturbances, so that they exist over a narrow range of gas velocities. The 
3-D waves have a pebbled appearance and characteristic wavelengths which decrease with 
increasing gas velocity. At sufficiently high gas velocities, long-wavelength large-amplitude waves 
with a highly roughened interface appear. These "roll waves" carry large masses of fluid and may 
actually be looked upon as flow surges in the liquid layer. At very high gas velocities atomization 
occurs through the removal, by the gas, of wavelets riding on the top of the roll waves. 

One of the main theoretical problems in interpreting these results is the prediction of the spatial 
variation of the gas-phase pressure and shear stress induced at the interface by the presence of the 
waves. The principal theoretical tool has been linear stability theory. A summary of progress in 
this direction is given in a recent review article by Hanratty (1983). The 2-D and pebbled waves 
are interpreted as resulting from an imbalance between the energy fed to the waves by wave-induced 
pressure variations in phase with the wave slope and viscous dissipation. Roll waves occur when 
the destabilizing effects of liquid inertia and long-wavelength pressure variations in phase with the 
wave height overcome the stabilizing effect of gravity. Atomization is suggested to be the result 
of an imbalance between the destabilizing effect of pressure variations over small-wavelength waves 
and the stabilizing effect of surface tension. 

The objective of this paper is to characterize the different types of wave patterns observed for 
gas-liquid flow in a horizontal circular pipe. The results are interpreted using theoretical 
approaches already applied to channel flows. Particular emphasis is placed on the prediction of 
the effect of changes of liquid viscosity and of pipe diameter. 
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2. T H E O R Y  

(a) Definitions of  the problem 

The observed transitions are interpreted by examining the conditions under which small- 
amplitude sinusoidal waves will grow or decay. It is recognized that this approach has limitations 
since not all of  the observed interfacial structures originate from the growth of  small disturbances. 
A more complete description would require the consideration of  non-linear effects. 

In order to simplify the analysis, the 2-D system shown in figure 1 is considered. The flow is 
assumed to be steady. The average velocities in the liquid and gas are designated by UL and UG 
and the average height of the liquid, by h- 

A disturbance h' = h - / ~  of  the following form is introduced at the interface: 

h" = J~ exp[/k (x - Ct)], [1] 

with x being the distance in the direction of  flow and t, the time. The amplitude, a c, and the 
wavenumber, k = 2n/2, are considered to be real. The wave velocity is complex, 

C = C R + iC I • [2] 

The wave will grow or decay in time depending on the sign of._C,. The condition Ct = 0 defines 
neutral stability. The calculations give the conditions (UL, Ua, h)  for which C~ is positive and for 
which the disturbance is growing the fastest (kC, is a maximum). 

(b ) Influence o f  wave-induced variations of  interfacial stresses 

The presence of the waves induces flow disturbances in the gas. These give rise to pressure and 
shear stress variations at the interface, which can feed or extract energy from the disturbance. The 
waves are considered to be of small enough amplitude that a linear response is obtained, whereby 

r( P~ exp[ik(x Ct)]. [3] 

The amplitudes, ~+ and/~i are complex and linearly dependent on/z, 

"~i ~--" "~iR + iTil [4] 

and 

P+ = Pi. + i/~,. IS] 

The real parts of [4] and [5] can be written as 

r( = fir COS k (x  - Ct) - Q sin k(x  - Ct), [6] 

and 

e~  = ~l~iR COS k ( x  - -  Ct ) - -  JDil sin k (x  - Ct ). [7] 

Thus -eia and/sir  are the amplitudes of components in phase with the wave height and - ' ~  and 
-/~it are the amplitudes of  components in phase with the wave slope. 

The velocity field in the liquid is given as 

u~ = ~ + u;, [8] 

I I I I I / / / I / / / / / / / / / / / / I / / I / I I /  

Gas 
HG " UG 

- - -  UL. 

I i t / 7 1 I I I I I I I I I I I / 1 1 1 1 / t l /  
IY It X 

Figure I. System to which stability analysis is applied. 
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and 
J 

Uy = uy. [9] 

The gas-phase pressure field feeds energy to the liquid by coupling with velocity component u;. 
A negative P~R is destabilizing since it gives a suction at the crest where u~ is positive and a 
compression at the trough where u~ is negative. This causes, what is called, a Kelvin-Helmholtz 
instability. Similarly, the destabilizing effect of a positive P~I is associated with the sheltering 
mechanism for wave generation, described by Jeffreys (1925). 

The gas-phase shear stress field feeds energy into the liquid through velocity component u~, and 
is destabilizing for positive ZiR or negative fil. Because of the small gas viscosity r, is usually much 
smaller than P;. One can, therefore, expect z[ to play an important role in wave generation only 
for thin films for which u'~>>u'y. 

(c) Stability analysis 

The spatial and temporal variation of u~ and u~ are defined by the linear momentum balance 
equations for the liquid since u~ and u~ are considered small compared to ft. The solution of these 
equations is complicated because of the variation of ff with y. Consequently, it is difficult to obtain 
results valid for a wide range of Reynolds numbers and of (z7 - CR). This difficulty will be avoided 
by assuming a plug flow in the liquid, with a velocity of UL. The main limitation of the solutions 
is that they do not correctly describe situations where the wavelength, 2, is very large compared 
to the height of the liquid layer,/7. These cases are best considered by using integral forms of the 
momentum equations (Hanrat_ty 1983), Consequently the solutions developed by Lin & Hanratty 
(1986) will be used when 2 >>h and 2 >>/7. 

The equations describing u~ and u~ are, therefore, given as 

gi + u~ o ;  = - pS Ox + VL \ O~2 +-Gry~ j ,  tlo] 

and 

t • 2 P _ _ _  f'O,u; 0 uq 
Ouy Ouy 1 Op' +VL + --g [11] 
0"-7 + UL Ox = PL Oy \ Ox 2 Oy 2 ) 

0u~ 0u~ 
~x +Try = o. [121 

These are solved under the conditions that u~ and uy vanish at y = 0 and that the stresses in the 
liquid at the interface, a,~ and a , ,  equal the stresses in the gas, ~i and P~: 

and 

with 

a;x = ~;,  [13] 

t I a ,  = P~ + Pi, [14] 

~r"=ULkOy + OX]' [15] 

and 

• = - p '  [16] ay e -4- 2/a L oy 

02h ' 
P~ = ~ 0x ~ . [17] 

These are solved by the methods outlined by Lamb (1945), Levich (1962) and Taylor (1963). The 
solutions to [10]-[12] are given as 

0¢ 0¢ / 

u,, = Ox Oy ' [18] 
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and 

provided 

and 

., - e - 7  

p 
PL at UL - g ( y  - f i ) ,  

a:~. a-'~ 
cx" +-~y" 0 

~ g~ F~2~ 0207 

The solutions of [21] and [22] are taken as 

~b = [A sinh(ky) + B cosh(ky)]exp[ik(x - Ct)] 
and 

with 

0 = [D cosh(/y) + E sinh(ly)]exp[ik(x - Ct)], 

12 = k: ik(C - UL) 
"V k 

The requirement of zero velocity at y = 0 gives 

l 
A = i D ,  B = i ~ E .  

Boundary conditions [13] and [14] and the kinematic condition at the interface, 

~h' ah' 
~-7 + u~ ~7 = u'~@ y = L 

define constants D and E and provide the following relation between k and C: 

~-(l-' + k: + f¢)I~ coth(kh)coth( /h) -  11 

(l 2 -  ka)I ~ co th ( lh ) -  coth(kh)l 

l 
- 21k + "?¢ ~ 

kh (C - UL )2 sinh (kh) sinh (I/~-- ) 

-lTF(2k2-qc).-}-(12dr-k2-.cc) 1 
v I _ S k _ _ _ _ _ = _ _ _ _ _ _ _ _ - - A  

+ i 2 ~  (kf2):(C - U,) ~ _ _  sinh(kh) sinh(/h) ------= 

h [(12 - k-')I ~ coth(l/Tt ) - coth (kh)J 
] 

= , 12 , l ~ , , 
- I ( l  +k'-q¢)+7.2(2k'-f¢)k I K F(2k--f¢)+(l-+k--/¢)lcoth(k/Tt)coth(lh)  

J 

[191 

[201 

[211 

[22] 

[231 

[24] 

[25] 

[26] 

[271 

[281 
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where 

% = [291 
~ZL(C -- UL)" 

By separately equating the real and imaginary parts of [28] to zero, two equations defining CR and 
C~ are obtained. 

Cohen & Hanratty (1965) and Craik (1968) derived an equation similar to [28]. They did not 
assume if(y) is described by a plug flow and present a solution to [10]-[12] which is valid for large 
liquid Reynolds numbers. Equation [4.8] from Craik's paper is identical to [28] at large Reynolds 
number, if the surface contamination terms in Craik's result are ignored. 

(d) Estimation of  the surface stresses 

The principal problem in calculating CR and Ct from [28] is the specification of/~iR,/~a, fie and 
f~. These are obtained by solving momentum balance equations for the gas, which are linearized 
around an average velocity profile. If this profile is assumed to be a plug flow and if viscous effects 
are neglected, 

and 

In addition, if k/7 --. 0, 

/Si___~R = k/7 P~ (Ua - C) 2 [30] 
/~ tanh(k/7)/7 

/~il = fir = ~il = O. [31] 

PiR PG-tU /~ = ~ o - C )  2- [32] 

The inclusion of viscous effects and the linearization around a measured velocity profile for flow 
over a flat plate gives more realistic results, with non-zero values of/Sil, fir and cir. This paper uses 
this type solution to evaluate the surface stress terms in [28]. 

An additional problem arises in formulating the linear momentum equations because the gas flow 
is turbulent. The presence of waves at the interface induces variations of the Reynolds stresses, 
which need to be specified. A completely satisfactory method for doing this is not yet available. 
[See Hanratty (1983) for a summary of progress.] 

The solution for/SIR, /5il, ~iR and fix uses a model for the wave-induced Reynolds stresses which 
does a good job in describing measurements of the shear stress variation along solid wavy walls. 
This is the Model D* described by Thorsness et al. (1978) and by Zilker et al. (1977). The method 
of calculation may be found in the above papers and, in much greater detail, in a recent thesis by 
Abrams (1984). It is limited to cases for which 2/t7 < 2re. 

Lin & Hanratty (1986), in their recent study of the initiation of slugs, used integral methods both 
for the gas and the liquid, to analyze the stability of the liquid for the case of ). >> lit. Pressure 
amplitude, PiR, was calculated using an equation very close to [32]. This solution will be used here, 
with /SiR given by [30] instead of [32], for large 2//7. 

(e) Examples of  stability calculations 

The stability analysis for a channel was applied to a pipe flow by assuming the liquid layer 
thickness used in the channel flow calculations is equal to a liquid height defined as the aria 
occupied by the liquid divided by the width of the interface (Chow 1959). 

Figures 2 and 3 illustrate the effect of changing the ratio of the height of the liquid along the 
pipe centerline to the pipe diameter from 0.4 to 0.2. Figure 4 illustrates the effect of increasing 
the viscosity from 1 to 80 cP. The ordinate in these plots is the wavelength. The abscissa is the 
superficial gas velocity, calculated as if no liquid were flowing. The average velocity of the liquid 
was obtained from a momentum balance for a fully developed condition, as outlined by Taitel & 
Dukler (1976b). The interfacial friction factor was calculated using the Blasius law and the concept 
of a hydraulic diameter. In actual flows the interfacial friction factor could be larger than predicted 
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Figure 2. Calculation of neutral stability curve and maximum growth rate locus (D = 9.53 crn, UL = 1 cP, 
7,/o = o.4/. 

by the Blasius equation because of the existence of a roughened interface. This larger friction factor 
does not affect appreciably the neutral stability curve or the location of the curve of maximum 
growth, but it does affect significantly the magnitude of  the growth rate. 

The solid curve spanning the lower wavelengths is the neutral stability curve (the loci of Cz = 0) 
calculated from [28] for 2 / t i  < 2n. The solid curve at large wavelengths is the neutral stability curve 
calculated from Lin's analysis (which is invalid for small 2). The dashed curve represents a possible 
interpolation between these two results. The region inside and to the right of these curves is a region 
of instability ((7, > 0). The conditions for maximum growth are also indicated by the loci of the 
maxima in kC1. 

The results shown in figures 2-4 are essentially unchanged if the conditions fir = r, = 0 are used 
in the calculations, provided 2 is not too large. This indicates that only the wave-induced variation 
of the gas-phase pressure is affecting the calculation of the minimum critical gas velocity and the 
calculation of the fastest growing wave. 

100 ' "  T '1 

L.~rge ~)'17 

[lilt I i: 
1 ~ "  1QC max kCl [  s 

2 - D Large ampt. ~,tom. 
! 

o., t IT 
0 5 10 Ib 

Us s (m/s) 

Figure 3. Calculation of neutral stability curve_and maximum growth rate locus (D = 9,53 cm, #L = 1 cP, 
h/D = 0.2). 
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Figure 4. Calculation of neutral stability curve and maximum growth rate locus (Z) = 9.53 cm, #L = 80 cP, 
h It) = o . 2 ) .  

Figure 5 examines the relative importance of P~, and/~iR for a water flow. The "J  curve presents 
the maximum values of  kCl. The - - -  curve is the same calculation with/~iR -----0. The - . -  curve 
is the calculation with Pil = 0. It is noted that /5~R has no effect on the calculated maxima in kCl 
at small gas velocities. This suggests that the critical gas velocity needed to generate waves on water 
flows is determined completely by a sheltering mechanism, whereby energy is fed to the waves by 
a pressure component which is in phase with the wave slope. It is also noted that pressure variations 
in phase with the wave height (/~R) start to become important at a superficial gas velocity of 
UGS ----- 7 m/s and become dominant at Uos ~ 9 m/s. 

Very-large-wavelength disturbances are not possible for small gas velocities. However, it is noted 
that at a certain critical gas velocity, which is strongly dependent on h/D, the generation of  
very-large-wavelength waves is possible. Lin & Hanratty (1986) interpret this as the critical 
condition for the initiation of slugs. In this region all of  the interfacial stress components are 
contributing, but P~R is the dominant effect. 
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Figure 5. Calculation of growth rate as a function 
of superficial gas v~ocity (Z)= 9.53 cm, /JL = l cP, 

h / Z) = 0.2). 
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The effect of an increase in viscosity can be seen by comparing figures 4 and 6 with figures 3 
and 5. As would be expected, the critical velocity necessary to generate waves increases with 
increasing liquid viscosity. A comparison of figures 5 and 6 for the case of/5~R = 0 indicates that 
a sheltering hypothesis by itself (P~I # 0, P,R = 0) would predict the initiation of waves at a gas 
velocity which is too high. The discrepancy becomes greater with increasing liquid viscosity. This 
illustrates what had already been pointed out by Francis (1954, 1956) and by Miles (1959) that 
the initiation of waves on high-viscosity liquids is controlled by a Kelvin-Helmholtz (K-H) 
mechanism (PiR # 0, /Sil = 0). 

The curves in figures 2-4 marked inviscid K-H theory represent calculations that assume inviscid 
plug flows both in the gas and the liquid. They are obtained using the K-H instability equation: 

_ . ,  > . . . . .  H Ftanh(k/7) p G t a n h ( k h )  
(UG--Ua)''tK'a +(PL--PC)gJ-~L -£-ff + PL -'~ J" [33] 

For the case of water flows, inviscid K-H theory predicts an initiation of waves at gas velocities 
that are too high. This is because the influence of pressure components in phase with the wave slope 
is ignored (Jeffreys 1925). For viscous fluids the inviscid K-H theory predicts the initiation of waves 
at a lower gas velocity than is calculated from the full viscous equations, because it ignores viscous 
damping in the fluid. 

As has already been pointed out by Lin & Hanratty (1986), inviscid K-H theory is found to 
predict gas velocities for the initiation of large-wavelength waves which are too high (see figure 
2). This is because the inviscid theory underestimates the destabilizing effects of inertia in the 
liquid. 

(f) Effect of pressure 
The effect of gas-phase pressure on the stability calculations is illustrated in figure 7 for the case 

of a 12 cP liquid flowing in a 9.53 cm pipe. It is noted that the growth rate is approximately 
independent of pressure if it is plotted against UGSX/~. This suggests that the initiation of 
large-amplitude waves and of atomization will occur at lower gas velocities in high-pressure flows. 

It is also noted that the value of UGSX/~G needed to initiate regular waves increases with 
increasing pressure and approaches the value that would be calculated by assuming/5 = 0. This 
suggests that the range of gas velocities over which regular waves exist becomes smaller with 
increasing pressure. 
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F i g u r e  7. E f f ec t  o f  p r e s s u r e  o n  g r o w t h  r a t e  (hiD = 0.2,  D = 9 .53 c m ,  # = 12 cP) .  
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3. DESCRIPTION OF THE EXPERIMENTS 

The experiments were carried out in the gas-liquid flow system described by Laurinat et al. 
(1984). Tests were made with two Plexiglas sections with i.d.s of 2.52 and 9.53 cm, located 15.5 
and 24.6 m from the entry. Studies with high-viscosity fluids in the 2.52 cm pipe were carried out 
with a smaller test length of 10 m in order to reduce frictional losses. The pipelines were carefully 
leveled by introducing water into them, closing both ends and adjusting the supports so that the 
level was the same along the pipeline. 

The pipes discharged into a separator which was at atmospheric pressure. A simple pipe tee was 
used to contact the phases at the entry. The liquid was introduced in the run of the tee and the 
gas, in the branch. 

The liquid viscosity was varied by using solutions of water and glycerine. Solutions with 
viscosities of 12 and 80 cP were used in the 9.53 cm pipe of 4.5, 16 and 70 cP in the 2.52 cm pipe. 
Because of limitations in the recirculation pump it was not possible to carry out studies at high 
liquid velocities with 12 and 80 cP solutions in the 9.53 cm pipe. 

The height of the liquid layer was measured by two parallel wire conductance probes that 
extended over the entire cross section of the pipe. This technique is described by Laurinat et al. 
(1984) and by Lin & Hanratty (1987). For the 9.53 cm pipe, the probe was located 220 pipe 
diameters from the entrance. For the 2.52 cm pipe, the probe was located 500 pipe diameters from 
the entrance for water and, 350 pipe diameters for glycerine-water solutions. Wave velocities were 
measured by locating a second pair of conductance probes 26.7 cm downstream in the 9.53 cm pipe, 
25.4cm downsteam for water flows in the 2.52cm pipe and 10.2cm downstream for 
water-glycerine flows in the 2.52 cm pipe. 

Experiments were also carried out ih the 9.53 cm pipe in which the liquid layer height was 
measured 80 and 160 pipe diameters from the entrance. This was done in order to determine the 
hydraulic gradients that exist at low gas velocities. 

4. DESCRIPTION OF THE WAVES 

(a ) Low-viscosity liquids 

The type of waves observed on a low-viscosity fluid are illustrated by the tracings in figure 8 
for a 4.5 cP liquid. For a fixed liquid flow the first waves observed with increasing gas velocity 
are small-amplitude 2-D waves of wavelength 2-4 cm that can only be observed visually by light 
reflection from the liquid surface. These disturbances first appear at the downstream end of  the 
pipe. An increase in the gas velocity causes the point of initiation to move upstream. These waves 
increase in amplitude and in wavelength as they propagate downstream. The troughs of the waves 
observed in the 9.53 cm pipe were covered with an interference wave pattern of small broad crested 
capillary waves. This was not the case in the 2.52 cm pipe. 

Upon increasing the gas flow rate, the amplitudes of the waves become larger and the wavelength 
decrease. This is illustrated by comparing the wave tracings in figures 8(a,b). The pebbly wave 
pattern observed by Hanratty & Engen (1957) was encountered only for water flows in the 9.53 era 
pipe. It occurred over a narrow range of  flow conditions. A curved wave front was also observed 
for low liquid velocities in the 9.53 cm pipe. 

At high enough gas velocities a "large amplitude" wave with a steep front and a gradually sloping 
back forms close to the entry. Tracings for this type of wave are shown in figures 9(b,c). These 
"large-amplitude" waves are less regular than the 2-D waves observed at lower gas velocities. This 
can be seen from the tracings but it can also be detected from the cross correlations of the film 
height signals from two locations separated in the flow direction. A maximum in the correlation 
is observed for a certain time delay. For the 2-D small-amplitude waves this maximum is close to 
unity. However, its value is < 1 for the "large-amplitude" waves and continues to decrease with 
increasing gas velocity. Another signature of the "large-amplitude" waves is that the distribution 
function for film height has a flatness factor > 3. 

At conditions close to the pseudo-slug transition defined by Lin & Hanratty (1987) a wave 
pattern similar to the roll waves described by Hanratty & Engen (1957) for gas-liquid flow in a 
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Figure 8. Film thickness tracings for constant superficial liquid velocity (D = 2 .52cm,  # t  = 4 . 5 c P ,  
UL~ = 0.03 m/s). 

channel is observed in the 2.52 cm pipe. In this case, some of the "large-amplitude" waves coalesce 
to form an even larger accelerating wave. Figure 8(c), or 9(d), gives an example of this type of 
interracial disturbance. It is to be noted that it is similar to the "roll wave" observed by Hanratty 
& Engen (1957) and by Miya et al. (1971) in a channel flow. 

Above a certain gas velocity the liquid starts to climb up the walls of  the pipe and the average 
shape is no longer approximated by a fiat horizontal plane. In addition, droplets or liquid filaments 
are torn from the liquid phase and deposited on the pipe walls. The initiation of atomization is 
defined as the gas velocity at which droplets first hit the top of the pipe. At higher gas velocities 
enough droplets are deposited so that liquid streaks form. This droplet deposition process is the 
mechanism by which annular flow is initiated in large-diameter pipes (Lin & Hanratty 1987) at gas 
velocities roughly twice that needed to initiate atomization. Wave wetting can be an additional 
mechanism for the initiation of annular flow in small-diameter pipes (Lin & Hanratty 1987), 

At large gas velocities in the 2.52 cm pipe the large-amplitude waves take the form of aerated 
ring waves (or disturbances) that wrap around the pipe circumference. For even higher gas 
velocities (>  100m/s) these disturbances disappear. In the 9.53 cm pipe they appear as broken 
pieces of a ring. They do not wrap around the entire circumference until very high gas velocities, 
say 70 m/s, are reached. 
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Film thickness tracings for constant superficial gas velocity (D = 2.52crn, u t =4.5cP, 
UGs = 9.8 m/s). 

The flow patterns observed over the range of liquid viscosities of  1-14 cP are similar. The main 
difference is that the regular 2-D waves appear at higher gas velocities and exist over a narrower 
range of  flow conditions as the liquid viscosity increases. 

(b ) High-riscosity liquids 
Wave patterns with a liquid of  high viscosity, 80 cP, differ from those with a low-viscosity liquid 

in that the region of regular 2-D waves barely exists and in that the interface appears less roughened 
even when waves are present. Examples of  these waves are given in figure 10. The first disturbances 
that are observed with increasing gas velocity are small-amplitude, small-wavelength, rather regular 
2-D waves. However, with just a slight increase in gas velocity, these give way to a few 
large-amplitude waves with steep fronts and smooth troughs, and with spacings that can vary from 
a few centimeters to a meter; see figure 10(a). Occasionally, several small 2-D waves can be seen 
in front of the large waves. This sequence of events that accompanies the initiation of waves on 
a very viscous liquid is the same as had been observed some years ago by Francis (1954, 1956) 
in his studies of gas flow over a deep liquid. 

With increasing gas flow the spacing between the waves decreases and the crests become curved; 
see figure t0(b). Eventually the waves become cell-like and extend only over a part of the liquid 
surface; see figures 10(c,d). Under these conditions the spacing is 1-2 cm. 
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As the crest becomes more curved the liquid starts to climb around the pipe circumference and 
atomization is initiated. The droplets formed with the 80 cP liquid appeared to be much smaller 
than those formed with water flows. They are thought to originate by the spewing of liquid from 
the crest of the large amplitude waves rather than by the removal of a wavelet, as has been 
suggested for water flows. 

The annular flow that eventually forms at high enough gas velocities (see figure 11) has some 
major differences from that observed for water flows; cf. figures (1 la,c). No disturbance waves were 
observed for the high-viscosity liquid for the range of flows studied. The waves are more broad 
crested and have a larger spacing. In fact, some of these waves ring around the pipe circumference. 
An interesting feature is that these ripples are usually oriented at an angle of < 90 ° to the flow. 
This suggests the possibility that a lifting force on these waves by the gas flow may be an important 
mechanism to counterbalance the tendency of the liquid to drain to the bottom of the pipe because 
of gravity. 

5. FLOW REGIME TRANSITIONS 

Maps showing the range of flow conditions for the different observed patterns are given by the 
curves in Mandhane-type plots in figures 12-17. The method used to detect slugs and pseudo-slugs 
is the same as described by Lin & Hanratty (1987). In this previous paper considerable attention 
was given to the transitions to annular flow, to slug flow and to pseudo-slug flow. In fact, the 
transitions to these regimes for water shown in figures 12 and 15 are the same as reported by Lin 
& Hanratty (1987). Consequently, this presentation will focus mainly on the change of  wave pattern 
in the stratified flow regime. Three patterns are defined: 2-D regular waves, large-amplitude 
irregular waves and atomizing flows. 

As mentioned in section 3, the flow in the pipeline was not fully developed at low gas velocities, 
with the consequence that hydraulic gradients existed. Experiments made under such conditions 
are indicated by the - - -  curves in figures 12-15. 

It is noted from figures 12-14 that liquids of lower viscosity require a lower liquid throughput 
for the generation of slugs at low gas velocities. This appears to be responsible for the change in 
the shape of the pseudo-slug region with liquid viscosity. 

The other main effect of viscosity is to increase the gas velocity required for the initiation of 
regular 2-D waves and to decrease the range of flow conditions for which they exist. In fact, for 
a 70 cP liquid (see figures 14 and 17) these regular waves are not observed at all. 
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Figure 12. Flow r,gime map and comparison with 
linear theory for a 2.52 ¢m pipe and a I cP liquid: 
- -  experimental observations; - - -  observations 
u n d e r  c o n d i t i o n s  t h a t  a hydraulic gradient existed; 

. . . . .  linear theory. 
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It is noted that on a Mandhane plot all of  the other transitions (besides the stratified to 
pseudo-slug, the stratified to slug at low gas velocities, and the smooth-stratified to regular wave) 
are not strongly sensitive either to changes in pipe diameter or in liquid viscosity. 

Figure 18 shows the same results given in figures 12 and 14 plotted as hiD vs the superficial gas 
velocity, where h is the height of  the liquid layer at the bottom of the pipe. It is to be noted that 
in this type of  plot (which should be less sensitive to whether the flow is fully developed) the effect 
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Figure 18. Liquid heights at the transitions for 1 and 70cP liquids: - -  transition to slugs and 
pseudo-slugs; - - -  transition from 2-D waves to large-amplitude waves; . . . . .  initiation of 2-D waves. 

of an increase of viscosity is to make the system more stable to the initiation of slugs. A strong 
stabilizing effect of viscosity with respect to the initiation of regular waves and a weak stabilizing 
effect with respect to the initiation of large amplitude irregular waves are also noted. 

6. COMPARISON OF WAVE TRANSITIONS TO LINEAR THEORY 

Observed transitions are marked on the plots of results calculated from linear theory in 
figures 2-6. 

Figures 2 and 3 indicate that the observed initiation of 2-D waves on low-viscosity liquids 
corresponds roughly with the extremum of the CI = 0 curve. A more careful comparison is given 
in figures 12-16. It is noted that the transition is observed to occur at a larger gas velocity than 
is predicted (the kCi = 0 curves). A possible explanation for this can be seen in figure 5, which shows 
that growth factor kCI maintains a relatively small value over a range of gas velocities. This could 
mean that better agreement would be obtained if a longer pipeline were used. Some support for 
this interpretation comes from the observation that the first waves appear at the outlet of the 
pipeline. As can be seen from figures 12-16, a somewhat better average agreement between linear 
stability theory and observations is obtained if kC1 = 1 s-l is used as a criterion. 

It is noted from figures 2 and 3 that the initiation of "large-amplitude waves corresponds roughly 
to the extreme of the inviscid K - H  analysis for low-viscosity fluids (/a = 1 cP). For a liquid with 
80 cP viscosity the inviscid K - H  analysis slightly underpredicts the critical gas velocity. This and 
the results shown in figures 5 and 6 indicate that these "large-amplitude" waves appear when 
pressure variations in phase with the wave height start to play an important role in determining 
the growth factor kCi. In fact, it is noted from figure 5 that good agreement is obtained between 
the critical gas velocity calculated for /5 = 0 and observations of the critical velocity for the 
initiation of "large-amplitude" waves. 

It is also noted that when #m is important the growth factor, kCl, increases very rapidly with 
increasing gas velocity. Thus, the critical gas velocity should not depend very strongly on the length 
of the pipe. This explains why "large-amplitude" waves are initiated close to the entry. 

For the case of an 80 cP liquid, shown in figure 6, the initiation of "large-amplitude" waves 
occurs at a gas velocity only slightly lower than the calculated critical (kC~ = 0). Much closer 
agreement is obtained if transition is defined by a growth factor of kCj = 10 s-L Figures 12-17 
compare observed critical conditions for the initiation of "large-amplitude" waves with calculations 
from linear stability theory for kCi = 10 s-L 
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The initiation of atomization occurs at gas velocities approximately twice that needed for the 
initiation of large-amplitude waves for which the growth rates predicted by linear theory are quite 
large. Figures 12-17 compare observed critical gas velocities for atomization with tinear theory 
calculations for kC~ = 80 s -~. 

7. D E S I G N  C R I T E R I A  

The character of the waves at the interface in stratified flow is of critical importance in 
determining pressure drop and hold-up and, consequently, in the development of design equations. 

The experimental results presented here indicate the Mandhane et al. (1974) criterion for the 
initiation of wavy-stratified flow roughly corresponds to the initiation of large-amplitude waves. 
The transition to wavy-stratified flow proposed by Taitel & Dukler (1976b) corresponds to the 
initiation of regular 2-D waves. On the basis of the sheltering hypothesis of Jeffreys they suggested 
the following relation: 

i 

i I341 
Uo >t L spo UL J ' 

where s is a sheltering coefficient. This becomes meaningless for high-viscosity liquids, since regular 
2-D wave are observed only for liquids with viscosity less than 20 cP. The data presented for the 
initiation of these waves are represented reasonably by the criterion suggested by Taitel & Dukler, 
except that a sheltering coefficient equal to 0.06 should be used. 

As indicated in the previous discussion the inviscid K-H equation is a good first approximation 
for the gas velocity required to initiate irregular large-amplitude waves. We designate this as UK-H 
and define it as follows for gas-liquid flows: 

kp PLgltanh(kH).  [35] 
(uK_  - >I + p o k l  

For the range of /7  used in the experiments, inviscid K-H  theory predicts that the minimum value 
of UK_~ is attained for a wavenumber of 

kin= P~'g.  [36] 
x/ 0. 

For the systems studied in this research k~, = 3 . 7 -  4.3 cm-~. 
A better criterion than [35] for the initiation of large-amplitude waves is obtained from [28] with 

Pj~ = 0. However, this is far too complicated an equation to be used for design purposes. Therefore, 
the following empirical equation, which takes into account the small effects of liquid height and 
liquid viscosity, is recommended: 

UGS = UK-H (~-~)0'025 (tanh i ~ ) )  °l ( ~ )  ' [37] 

Here UK_. is defined by [35] with 

k = k m =  ~ . 

Dimensionless group 0 was used by Taylor (1963) to account for the effects of liquid viscosity and 
is defined as 

0 = Pl. 0"2 , , . [38] 
pG # L U~ 

The term 0w is the value of 0 if the liquid is water. Velocity UGs is the superficial gas velocity for 
the initiation of large-amplitude waves and =e is the fraction of the cross section of the pipe occupied 
by gas. 
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An approximate criterion for the initiation of atomization is as follows: 

UGs-- 1.8(Uos from [37]). [39] 

If the conclusions presented in subsection 2(f) are correct, one would expect that the initiation 
of  regular waves would occur at higher gas velocities for high pressures than predicted by [34]. 
Equations [37] and [39], however, should still be good approximations at high pressures since, 
according to [35], UK-H ~ (PG) -1;:. 

Comparisons of  [34] (with s = 0.06), [37] and [39] with observations of  the gas velocity needed 
to initiate regular 2-D waves, irregular "large-amplitude" waves and atomization are given in 
figures 19-21. 
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N O M E N C L A T U R E  

A = Cons tan t  
B = Cons tan t  
C = Wave  velocity 
D = Cons tan t  
D = Diamete r  
E = Cons tan t  
f = Frict ion factor  
h = Height  of  liquid film 

H = Height  o f  gas phase 
k = W a v e n u m b e r  
l = W a v e n u m b e r ,  defined in [25] 

p, P = Local  pressure in liquid and gas phases,  respectively 
s = Sheltering coefficient 
t = T ime 

u = Local  velocity o f  liquid phase  
Uos, ULS = Superficial velocities o f  the gas and liquid, respectively 

U = Local  velocity o f  gas phase  
UK-H = Gas  velocity, defined in [35] 

x = Coord ina te  in direction of  flow 
y = Coord ina te  perpendicular  to direction of  flow 

Greek letters 

= Void fract ion 
/~ = Viscosity 
v = Kinemat ic  viscosity 
p = Densi ty  
o = Stress 
cr = Surface tension 

z = Shear  stress 

fc = Modif ied ampl i tude  o f  shear stress at the interface, defined in [29] 
4) = Velocity potent ia l  o f  liquid 
~b = Funct ion,  solut ion o f  [22] 

Subscripts 

a = Quanti t ies  spatially averaged over  length 
G = G a s  phase  

i = At  gas- l iquid interface 
I = Imag ina ry  par t  

L = Liquid phase 
R = Real par t  

Superscripts 

' = Fluctuat ing  c o m p o n e n t  o f  pe r tu rba t ion  
- = T i m e - a v e r a g e d  quanti t ies  

= Ampl i tude  o f  f luctuating c o m p o n e n t  o f  pe r tu rba t ion  
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